Why is uranium used to measure the age of rocks
Gneiss Samples from outcrops in the Karelian area of eastern Finland are believed to represent the oldest rocks in the Baltic region.
These rocks intrude even older rocks that have not been dated. Morton Gneiss [see Editor's Note ] Samples from outcrops in southwestern Minnesota are believed to represent some of the oldest rocks in North America.
Carbon samples are converted to acetylene gas by combustion in a vacuum line. Uranium decays to form lead with a half-life of 4. Uranium decays to form lead with a half-life of million years. Uranium-lead dating is usually performed on crystals of the mineral zircon Figure When zircon forms in an igneous rock, the crystals readily accept atoms of uranium but reject atoms of lead. Therefore, if any lead is found in a zircon crystal, it can be assumed that it was produced from the decay of uranium.
Uranium-lead dating can be used to date igneous rocks from 1 million years to around 4. Some of the oldest rocks on Earth have been dated using this method, including zircon crystals from Australia that are 4. Radiometric dating can only be used on materials that contain measurable amounts of radioactive materials and their daughter products.
This includes organic remains which compared to rocks are relatively young, less than , years old and older rocks. Ideally, several different radiometric techniques will be used to date the same rock. Agreement between these values indicates that the calculated age is accurate. In general, radiometric dating works best for igneous rocks and is not very useful for determining the age of sedimentary rocks. To estimate the age of a sedimentary rock deposit, geologists search for nearby or interlayered igneous rocks that can be dated.
For example, if a sedimentary rock layer is sandwiched between two layers of volcanic ash, its age is between the ages of the two ash layers. Using a combination of radiometric dating, index fossils, and superposition, geologists have constructed a well-defined timeline of Earth history. For example, an overlying lava flow can give a reliable estimate of the age of a sedimentary rock formation in one location. Index fossils contained in this formation can then be matched to fossils in a different location, providing a good age measurement for that new rock formation as well.
As this process has been repeated all over the world, our estimates of rock and fossil ages has become more and more accurate. Techniques such as superposition and index fossils can tell you the relative age of objects, which objects are older and which are younger.
Other types of evidence are needed to establish the absolute age of objects in years. Geologists use a variety of techniques to establish absolute age, including radiometric dating, tree rings, ice cores, and annual sedimentary deposits called varves.
Radiometric dating is the most useful of these techniques—it is the only technique that can establish the age of objects older than a few thousand years. The concentrations of several radioactive isotopes carbon, potassium, uranium and and their daughter products are used to determine the age of rocks and organic remains.
Skip to main content. Geologic History. Search for:. Absolute Ages of Rocks As we learned in the previous lesson, index fossils and superposition are effective methods of determining the relative age of objects.
Lesson Objectives Define the difference between absolute age and relative age. Describe four methods of absolute dating. Each time a new layer of sediment is deposited it is laid down horizontally on top of an older layer.
This is the principle of original horizontality : layers of strata are deposited horizontally or nearly horizontally Figure 2.
Thus, any deformations of strata Figures 2 and 3 must have occurred after the rock was deposited. Figure 2: The principles of stratigraphy help us understand the relative age of rock layers. Layers of rock are deposited horizontally at the bottom of a lake principle of original horizontality.
Younger layers are deposited on top of older layers principle of superposition. Layers that cut across other layers are younger than the layers they cut through principle of cross-cutting relationships. The principle of superposition builds on the principle of original horizontality. The principle of superposition states that in an undeformed sequence of sedimentary rocks, each layer of rock is older than the one above it and younger than the one below it Figures 1 and 2. Accordingly, the oldest rocks in a sequence are at the bottom and the youngest rocks are at the top.
Sometimes sedimentary rocks are disturbed by events, such as fault movements, that cut across layers after the rocks were deposited. This is the principle of cross-cutting relationships. The principle states that any geologic features that cut across strata must have formed after the rocks they cut through Figures 2 and 3. Figure 3: The sedimentary rock layers exposed in the cliffs at Zumaia, Spain, are now tilted close to vertical.
According to the principle of original horizontality, these strata must have been deposited horizontally and then titled vertically after they were deposited. In addition to being tilted horizontally, the layers have been faulted dashed lines on figure.
Applying the principle of cross-cutting relationships, this fault that offsets the layers of rock must have occurred after the strata were deposited. The principles of original horizontality, superposition, and cross-cutting relationships allow events to be ordered at a single location. However, they do not reveal the relative ages of rocks preserved in two different areas.
In this case, fossils can be useful tools for understanding the relative ages of rocks. Each fossil species reflects a unique period of time in Earth's history.
The principle of faunal succession states that different fossil species always appear and disappear in the same order, and that once a fossil species goes extinct, it disappears and cannot reappear in younger rocks Figure 4. Figure 4: The principle of faunal succession allows scientists to use the fossils to understand the relative age of rocks and fossils.
Fossils occur for a distinct, limited interval of time. In the figure, that distinct age range for each fossil species is indicated by the grey arrows underlying the picture of each fossil. The position of the lower arrowhead indicates the first occurrence of the fossil and the upper arrowhead indicates its last occurrence — when it went extinct.
Using the overlapping age ranges of multiple fossils, it is possible to determine the relative age of the fossil species i. For example, there is a specific interval of time, indicated by the red box, during which both the blue ammonite and orange ammonite co-existed.
If both the blue and orange ammonites are found together, the rock must have been deposited during the time interval indicated by the red box, which represents the time during which both fossil species co-existed. In this figure, the unknown fossil, a red sponge, occurs with five other fossils in fossil assemblage B.
Fossil assemblage B includes the index fossils the orange ammonite and the blue ammonite, meaning that assemblage B must have been deposited during the interval of time indicated by the red box. Because, the unknown fossil, the red sponge, was found with the fossils in fossil assemblage B it also must have existed during the interval of time indicated by the red box.
Fossil species that are used to distinguish one layer from another are called index fossils. Index fossils occur for a limited interval of time. Usually index fossils are fossil organisms that are common, easily identified, and found across a large area. Because they are often rare, primate fossils are not usually good index fossils.
Organisms like pigs and rodents are more typically used because they are more common, widely distributed, and evolve relatively rapidly. Using the principle of faunal succession, if an unidentified fossil is found in the same rock layer as an index fossil, the two species must have existed during the same period of time Figure 4. If the same index fossil is found in different areas, the strata in each area were likely deposited at the same time.
Thus, the principle of faunal succession makes it possible to determine the relative age of unknown fossils and correlate fossil sites across large discontinuous areas. All elements contain protons and neutrons , located in the atomic nucleus , and electrons that orbit around the nucleus Figure 5a.
In each element, the number of protons is constant while the number of neutrons and electrons can vary. Atoms of the same element but with different number of neutrons are called isotopes of that element.
Each isotope is identified by its atomic mass , which is the number of protons plus neutrons. For example, the element carbon has six protons, but can have six, seven, or eight neutrons. Thus, carbon has three isotopes: carbon 12 12 C , carbon 13 13 C , and carbon 14 14 C Figure 5a. Figure 5: Radioactive isotopes and how they decay through time. C 12 and C 13 are stable. The atomic nucleus in C 14 is unstable making the isotope radioactive.
Because it is unstable, occasionally C 14 undergoes radioactive decay to become stable nitrogen N The amount of time it takes for half of the parent isotopes to decay into daughter isotopes is known as the half-life of the radioactive isotope.
The Potassium-Argon dating method is the measurement of the accumulation of Argon in a mineral. It is based on the occurrence of a small fixed amount of the radioisotope 40 K in natural potassium that decays to the stable Argon isotope 40 Ar with a half-life of about 1, million years.
In contrast to a method such as Radiocarbon dating, which measures the disappearance of a substance, K-Ar dating measures the accumulation of Argon in a substance from the decomposition of potassium. Argon, being an inert gas, usually does not leech out of a mineral and is easy to measure in small samples.
This method dates the formation or time of crystallisation of the mineral that is being dated; it does not tell when the elements themselves were formed. It is best used with rocks that contain minerals that crystallised over a very short period, possibly at the same time the rock was formed.
This method should also be applied only to minerals that remained in a closed system with no loss or gain of the parent or daughter isotope. Uranium-Lead U-Pb dating is the most reliable method for dating Quaternary sedimentary carbonate and silica, and fossils particulary outside the range of radiocarbon. Quaternary geology provides a record of climate change and geologically recent changes in environment.
U-Pb geochronology of zircon , baddelyite , and monazite is used for determining the age of emplacement of igneous rocks of all compositions, ranging in age from Tertiary to Early Archean. U-Pb ages of metamorphic minerals, such as zircon or monazite are used to date thermal events, including terrestrial meteoritic impacts. U-Pb ages of zircon in sediments are used to determine the provenance of the sediments. Fission track analysis. The Fission track analysis is based on radiation damage tracks due to the spontaneous fission of U.
Fission-tracks are preserved in minerals that contain small amounts of uranium, such as apatite and zircon. Fission-track analysis is useful in determining the thermal history of a sample or region. By determining the number of tracks present on a polished surface of a grain and the amount of uranium present in the grain, it is possible to calculate how long it took to produce the number of tracks preserved.
0コメント